网上娱乐正规_2019动画片大全

新浦京娱乐场官网app

<cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite>
  • <cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite>
  • <cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite>
  • On Dirac cohomology of complex classical Lie groups

    发布者:文明办发布时间:2019-07-03浏览次数:69


    主讲人:Daniel Kayue Wong,香港中文大学(深圳)助理教授


    时间:2019年8月1日10:10


    地点:徐汇校区3号楼301


    举办单位:数理学院


    内容介绍:Let $G$ be a real reductive Lie group, and $\hat{G}^d$ be the collection of  irreducible unitary representations with nonzero Dirac cohomology. In the  special case when $G$ is a complex group (treated as a real group), Barbasch and  Pandzic conjectured $\hat{G}^d$ can be obtained from parabolic induction on some  unipotent representations. On the other hand, Dong reduced the study of  $\hat{G}^d$ to a finite set of representations called scattered representations.  In this talk, we will see how these two approaches of $\hat{G}^d$ can be  reconciled for complex classical Lie groups, which in turn will verify a couple  of conjectures of Barbasch-Pandzic, and identify the scattered representations  computed by Dong using the atlas program. This is a joint work with Dan Barbasch  and Chao-ping Dong.